Search results

Search for "N-heterocyclic carbene" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • conditions that the thiol-linked monolayer can be exposed to, prompting the development of alternative surface linking chemistry [12]. N-Heterocyclic carbene (NHC)-based monolayers have received increasing attention for their reported stability under a variety of harsh conditions [11][13][14][15][16]. Indeed
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • Sciences, Dept. Imaging Physics, Lorentzweg 1, 2628CJ Delft, Netherlands 10.3762/bjnano.12.21 Abstract Seven gold(I) N-heterocyclic carbene (NHC) complexes were synthesized, characterized, and identified as suitable precursors for focused electron beam-induced deposition (FEBID). Several variations on the
  • −. Keywords: Au(I) precursors; focused electron beam-induced deposition (FEBID); gold-NHC; gold precursors; nanofabrication; N-heterocyclic carbene; Introduction Focused electron beam-induced deposition (FEBID) is a nanofabrication technique that allows for the growth of three-dimensional free-standing
  • -heterocyclic carbene (NHC) complexes on the growth rate and composition of deposits. The precursors that were synthesized had the general formula Au(NHC)X, and the effect of the variation of both the NHC ligand and the ancillary ligand X (X = Cl, Br, I, CF3) (Figure 1) was studied. Because the sublimation
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • ionic liquids decomposition of GaCp* is possible at temperatures below 300 °C with the aid of transition metals. Reactions of transition-metal complexes are reported to show H/D activation/exchange reactions at the C2 imidazolium carbon atom of the ionic liquid cation. The generated N-heterocyclic
  • carbene ligands (NHC) stabilize metal clusters and nanoparticles [44]. By insertion of the transition-metal center into the C2–H bond of imidazolium salts, transition-metal hydride complexes are formed [45]. Finally, H transfer reactions from the transition metal to GaCp* lead to the release of Cp*H
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

Electrolyte tuning in dye-sensitized solar cells with N-heterocyclic carbene (NHC) iron(II) sensitizers

  • Mariia Karpacheva,
  • Catherine E. Housecroft and
  • Edwin C. Constable

Beilstein J. Nanotechnol. 2018, 9, 3069–3078, doi:10.3762/bjnano.9.285

Graphical Abstract
  • reported N-heterocyclic carbene iron(II) dye in the presence of chenodeoxycholic acid co-adsorbant, can be considerably improved by altering the composition of the electrolyte while retaining an I−/I3− redox shuttle. Critical factors are the solvent, presence of ionic liquid, and the use of the additives 1
  • ; N-heterocyclic carbene iron(II) complex; solar energy conversion; sustainable energy; Introduction The field of dye sensitized solar cells (DSCs) has developed significantly [1][2][3] since the pioneering publication of O’Regan and Grätzel [4]. Photoconversion efficiencies (η) of ≈11–14% have been
  • -[Fe{bpy-4,4'-(CO2H)2}2(CN)2] (Scheme 2) achieved a short-circuit current density (JSC) of 0.29 mA cm−2 and an open-circuit voltage (VOC) of 360 mV. However, little progress was made in this area [26] until the interest shifted to the use of iron(II) complexes incorporating N-heterocyclic carbene (NHC
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2018

Adsorbate-driven cooling of carbene-based molecular junctions

  • Giuseppe Foti and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 2060–2068, doi:10.3762/bjnano.8.206

Graphical Abstract
  • molecule gives rise to pronounced deviations from its behavior as an isolated molecule, resulting in marked changes in the heating and cooling dynamics (HCD) of the junction. We consider a N-heterocyclic carbene-based junction and study the effect of a neighboring NH2 species adsorbed on one of the
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2017
Other Beilstein-Institut Open Science Activities